Cosets, Lagrange’s theorem and normal subgroups

ثبت نشده
چکیده

Our goal will be to generalize the construction of the group Z/nZ. The idea there was to start with the group Z and the subgroup nZ = 〈n〉, where n ∈ N, and to construct a set Z/nZ which then turned out to be a group (under addition) as well. (There are two binary operations + and · on Z, but Z is just a group under addition. Thus, the fact that we can also define multiplication on Z/nZ will not play a role here, but its natural generalization is very important in Modern Algebra II.) We would like to generalize the above constructions, beginning with congruence mod n, to the case of a general group G (written multiplicatively) together with a subgroup H of G. However, we will have to be very careful if G is not abelian.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Introduction to Abstract Algebra ( Math 113 )

3 Groups 12 3.1 Basic Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.2 Subgroups, Cosets and Lagrange’s Theorem . . . . . . . . . . . . . . . . . . 14 3.3 Finitely Generated Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.4 Permutation Groups and Group Actions . . . . . . . . . . . . . . . . . . . . 19 3.5 The Oribit-Stabiliser Theorem . ....

متن کامل

A certification of Lagrange’s theorem with the proof assistant ÆtnaNova/Referee

We report on the computerized verification of Lagrange’s theorem, carried out with the proof assistant ÆtnaNova/Referee. The scenario starts with the basic definitions in group theory, such as the notions of subgroups and right cosets. Then, the proof of Lagrange’s theorem is formalized following the same approach present in most algebra textbooks. The proof assistantÆtnaNova/Referee is grounde...

متن کامل

Course 311: Michaelmas Term 2005 Part II: Topics in Group Theory

2 Topics in Group Theory 2 2.1 Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2.2 Examples of Groups . . . . . . . . . . . . . . . . . . . . . . . 3 2.3 Elementary Properties of Groups . . . . . . . . . . . . . . . . 4 2.4 Subgroups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.5 Cyclic Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.6 Co...

متن کامل

Cosets and Lagrange’s Theorem

In other words, a coset is what we get when we take a subgroup and shift it (either on the left or on the right). The best way to think about cosets is that they are shifted subgroups, or translated subgroups. Note g lies in both gH and Hg, since g = ge = eg. Typically gH 6= Hg. When G is abelian, though, left and right cosets of a subgroup by a common element are the same thing. When an abelia...

متن کامل

Notes on Group Theory

2 Basic group theory 2 2.1 The definition of a group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2.2 Group homomorphisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2.3 Subgroups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.4 Cosets and quotient spaces . . . . . . . . . . . . . . . . . . . . . . . . . . ....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016